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Trajectory mining has gained growing attention due to its emerging applications, such as
location-based services, urban computing, and movement behavior analyses. One critical
and fundamental mining task is to retrieve specific locations or trajectories that satisfy par-
ticular patterns. However, existing approaches mainly represent the trajectory as a collec-
tion of geographic and temporal features, so the latent semantic properties are barely
considered. In this paper, we introduce a new semantic trajectory representation method,
which considers trajectory structures, temporal information, and domain knowledge to
make efficient semantic retrieval possible. Specifically, we first introduce a
synchronization-based model to identify multi-resolution regions of interest (ROIs) to
extract structures from disordered raw trajectories. Afterward, we proposed a hierarchical
embedding model to embed ROIs as well as trajectories on the hierarchical ROI network as
continuous vectors by considering multiple kinds of semantic similarity. As a result, users
can easily retrieve desirable ROIs or trajectories by computing the similarity among
embedded vectors. Experiments show that our approach excels both classical trajectory
metric-based models and state-of-the-art deep network embedding models in terms of
retrieving interpretable ROIs and trajectories.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

The increasing use of location-aware devices has been boosting the generation of trajectory data in diverse fields. Gen-
erally, a trajectory is represented as a sequence of time-stamped geographic locations, and it is used to characterize the
movement of objects, such as people, vehicles, animals, hurricanes, and ocean currents [1]. Recently, due to the explosion
and increasing use of taxi service software, e.g., DiDi, Uber, and the social media such as Facebook and Foursquare, raw tra-
jectory data has been enriched with various semantic information. Mining the semantic knowledge is a key to understanding
human mobility, which makes semantic trajectory mining a prevalent subject [2].

For extracting knowledge from trajectory data, the primary step is to generate a good trajectory representation. However,
it remains to be a challenging task because of the disordered nature of trajectory data. For instance, sampling rates and
lengths could vary in different trajectories. At present, there are mainly three strategies for trajectory representation:
point-based [3,4], segment-based [5,6], and feature-based representation [7,8]. Based on the representative strategies, many
distance functions are defined (e.g., DTW [9], LCSS [10], EDR [11], and Fréchet distance [12]).
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Unfortunately, the mainstream trajectory representation methods mentioned above focus mainly on geographic informa-
tion, and they barely consider semantic knowledge. Thus, those trajectory representation methods are limited to some speci-
fic and easy mining tasks. Existing methods cannot support complex and multi-faceted queries like (1) Retrieve some
dangerous regions in the city that have similar characteristics with the given crime areas; (2) Retrieve the most suspected
trajectories from the database by giving an observed trajectory of a criminal. For such complex retrieval tasks, users have to
manually dissect the problem into different parts and then construct queries separately.

1.1. Basic Idea

In order to achieve the aforementioned semantic region and trajectory retrieval tasks, we aim to define a similarity metric
that is tailored to integrate certain desirable semantic similarity. For illustration, we display in Fig. 1(a) three taxi trajectories
(i.e., T1; T2 and T3) in Porto, Portugal. If we only consider the geometric properties of the three trajectories, the similarity
between T1 and T2 is higher than that between T2 and T3. Nevertheless, by taking into account the transport system (i.e.,
structural information) and region functions (i.e., domain knowledge) of city, we find that T2 is more similar to T3 (Fig. 1
(b)). Because both T2 and T3 indicate the movement from the rural area to the downtown through the motorways, while
T1 represents the movement from airport to the seashore area through the national roads.

In this work, we propose a semantic trajectory representation, in which we preserve the trajectory structures and incor-
porate the desirable semantic information. To begin with, we propose a synchronization-based clustering model, CASCADESYNC,
to transform raw GPS points to multi-resolution regions of interest (ROIs) from fine-grained to coarse-grained levels. Each
ROI in the tree-shaped hierarchical network is a compact prototype of a large set of GPS points or small ROIs. Therefore, tra-
jectories can be replaced by sequences of ROIs on each level of the network (Fig. 2(a)–(c)). Afterward, we propose a hierar-
chical embedding model to embed each ROI/trajectory to a continuous vector by leveraging network structures, temporal
information, and other domain knowledge. In this way, the semantic information is well preserved in the metric of the
embedding space. The whole procedure is shown in Fig. 1(c). We can cast the semantic retrieval task as the problem of
searching the most similar vectors to the target vector by utilizing the representation.

1.2. Main contributions

The main contributions of this work are summarized as follows.

1. We propose a synchronization-based clustering algorithm CASCADESYNC that extracts the trajectory structure as a multi-
resolution ROI network. The geographic and temporal information and global statistics are preserved on the hierarchical
ROI network.
(a) (b)

(c) Semantic trajectory representation
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Fig. 1. Illustration of trajectory representation. (a) Three raw trajectories in Porto, Portugal. (b) The same trajectories represented by nodes in the semantic
ROI network. (c) Procedures of transformation from raw trajectories to semantic vectors.



Fig. 2. Illustration of the CascadeSync algorithm and the ROI embedding on the hierarchical ROI network.
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2. Utilizing the geometric property and semantic information (e.g., network structures, temporal information, and domain
knowledge), we propose a hierarchical embedding model to embed each ROI/trajectory as a continuous vector in a
semantic vector space. Thereby, the semantic similarity between two ROIs/trajectories can be measured by computing
the Euclidean distance of two vectors directly.

3. The empirical experiments show that the proposed method successfully captures semantic information of trajectory data,
and it has superior performance in semantic ROI/trajectory retrieval tasks compared with state-of-the-art methods.

The rest of paper is organized as follows. Section 2 discusses related work. Section 3 elaborates the proposed method.
Section 4 presents the experiments. Finally, we conclude our work in Section 5.
2. Related work

2.1. Trajectory representation and retrieval

Trajectory representation, indexing, and retrieval are the foundations of trajectory pattern mining. Here we introduce a
summary of state-of-the-art trajectory representation and retrieval strategies.

2.1.1. Trajectory representation
Currently, there are mainly three strategies to represent the trajectory: point-based representation, segment-based rep-

resentation, and feature-based based representation. Point-based representation is the most common method. The key idea
is to detect the most representative points and use them to describe trajectories. Some researchers defined the representa-
tive point as stay points, which are the small regions where the moving objects stop for a relatively long time [13]. Li et al.
[14] detected a few reference spots where a moving object visited frequently.

Segment-based representation is also popular. Lee et al. [5] partitioned trajectories to segments by using the concept of
Minimal Description Language (MDL). Zheng et al. [15] divided trajectories into alternate walk segments and nonwalk seg-
ments based on locations and velocities of moving objects. Moreover, some work matches trajectories to the road map to
get restrained segments [16,17].

Feature-based representation aims to construct a new feature space to represent trajectories. Annoni and Forster [7]
transferred trajectories to Fourier coefficients, simplifying a 2D motion representation to a 1D complex sequence represen-
tation. Gariel et al. [18] resampled trajectories to have a unified length. Then they used principal component analysis (PCA)
to pursue a compact representation. And some work [8,19] fed trajectories to Long-Short Term Memory (LSTM) networks to
learn the spatial path features encoded in hidden vectors.

2.1.2. Trajectory retrieval
Usually, the queries of trajectories are straightforward: ask for points of interest (POIs) or trajectories that bear the most

resemblance to a given POI/trajectory. The most critical task is to define the similarity metric. Almost all mainstreammetrics
only focus on geographic similarity. Early researchers [20] used the sum-of-pairs distance, which requires trajectories to
have a unified length. This setting is impractical in real-world data. Dynamic time warping (DTW) distance is the first
one to overcome the defect. It allows some points repeating multiple times in order to obtain optimal alignment [9]. The
longest common subsequence (LCSS) distance [10] and edit distance on real sequence (EDR) distance [11] were proposed
to remove the effects caused by the noise points. Fréchet distance was proposed to take into account the locations and order-
ing of the points along the curves [12].
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Building upon the representations and measures, many trajectory indexing structures were proposed. For example, STR-
tree [21], TB-tree [21], and HR-tree [22] generalized the R-tree, an effective spatial database, to store spatial and temporal
dimensions together. Afterward, SETI [23] was proposed to distinguish temporal information from spacial indexing system
to increase the retrieval efficiency.

However, almost all traditional trajectory representation models and indexing systems are built upon the geographic and
temporal features of trajectory data. Thus the semantic retrieval and mining tasks are hard to perform.

2.2. Distributed vector embedding

Word embedding becomes ubiquitous in natural language processing (NLP) and information retrieval (IR). It captures the
syntactic and semantic similarities among words and exhibits the effectiveness on large datasets [24,25]. The philosophy of
word embedding is to project words to a continuous vector space in an unsupervised way where the context relationship of
words in documents is exploited. Afterward, the semantic meanings can be exploited by computing on the embedding vec-
tors. Recently, a large body of work has tried to compute the embedding that captures the semantics of word sequences
(phrases, sentences, and paragraphs) instead of words, with methods ranging from the simple additional composition of
the word vectors [26,27] to sophisticated architectures such as convolutional neural networks [28] and recurrent neural net-
works [29].

Furthermore, researchers applied the distributed representation strategy to network representation learning. Network
representation learning intends to embed network into a low dimensional space while preserving the network structure
and property. In consequence, the learned embedding vectors can be applied to the downstream network tasks. In all net-
work embedding methods, random walk-based methods are popular because it can easily captured the semantic network
information. DeepWalk [30] is the first work that learns node embeddings by randomly walking on the graph. Then it feeds
the generated sequences to a skip-gram model [31]. LINE [32] directly samples node pairs from the graph and preserves
nodes’ first and second-order proximities to generate representation. Node2Vec [33] develops a generalized bias random
walk mechanism that can parameterize Breadth First Search and Depth First Search. Moreover, a lot of work was proposed
to handle the heterogeneous information network (HIN). BGEM [34] uses a simple strategy by minimizing the KL-divergence
between every pair of bipartite graphs. Metapath-based methods [35,36] define a collection of meta-paths, which are then
used to restrict the direction while generating random walks.

In our work, ROIs are analogous to words while trajectories are analogous to sentences. However, the similarity metrics of
trajectory data are in distinct contrast to those of languages. For example, if two words are similar in language semantics,
they will be contexts of each other in some sentences. Conversely, two similar ROIs will never adjoin each other in any tra-
jectory when the geographic distance between them is too large. Therefore, the semantic contexts (neighborhoods) have to
be carefully defined.

2.3. Synchronization-based clustering

Our work is also highly related to synchronization-based clustering [37,38]. Unlike traditional clustering algorithms,
synchronization-based clustering makes each data point interact with surrounding neighbors and dynamically changes all
points’ positions. The model converges when points stop changing positions. Recently, many synchronization-based models
and data mining algorithms have been proposed, and they have shown many desirable properties in a wide range of appli-
cations [39–44]. For instance, in network mining, each node on the network is pushed or pulled through the local network
structure, resulting in a few distinct communities [41]. Seliger et al. [40] discussed mechanisms of learning and plasticity in
networks of phase oscillators through a generalized Kuramoto model. In bioinformatics, a strategy was proposed to find
groups of genes by analyzing the cell-cycle-specific gene expression [39]. From another perspective, the correlated genes
and conditions can interact simultaneously, and a set of co-clusters are yielded [42]. The concept of synchronization is suit-
able for trajectory data. Because it does not need to determine k explicitly like k-means based models, nor does it render
clusters in arbitrary shapes like DBSCAN-based models.

3. Proposed method

Notations. The most prevalent data format of the trajectory is a temporal sequence of latitude/longitude coordinates as
follows:
T ¼ fhs1; s2; . . . ; snijsi ¼ ðpi; tiÞg; ð1Þ
where pi ¼ ðxi; yiÞ is a (latitude, longitude) pair (GPS coordinate) representing a sample point on the map. ti is the time stamp
of the sample si, and n is the length of this trajectory.

In our work, as mentioned above, a massive amount of GPS points are reduced to a few multi-resolution regions of inter-
est (ROIs) (Fig. 2(c)). Consequently, the trajectories are reduced to sequences of ROIs on different layers of the hierarchical
ROI network. The trajectory represented by ROIs on layer l is written as,



Table 1
Important notations.

Notation Description

l l ¼ f0;1;2; . . . ; LMg is the layer of ROI networks

T l Trajectory set. Each Tl
i 2 T l is a trajectory written as (2)

ROI l ROI set. Each ROIli 2 ROI l is a node of the network on the l-th layer ðl > 0Þ
Pl Point set. Each Pl

i 2 Pl is a GPS point (l ¼ 0) or the center of ROIliðl > 0Þ
� The radius of the interaction range, defined in (3)
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Tl ¼ hsl1; sl2; . . . ; slmijsli ¼ ðpl
i; t

l
iÞ

� �
; ð2Þ
where the superscript l denotes the layer of hierarchical ROI network, pl
i is the center point of the ROI that replaces one or

more raw GPS points on raw trajectory T. In addition, some key notations used in this work are listed in Table 1.

3.1. Multi-resolution regions of interest extraction via CascadeSync model

Trajectories are usually represented by a mass of GPS points. It is not a good way to extract patterns and mine the tra-
jectory data on these points directly, as different trajectories often have varying lengths and different sampling rates. One
intuitive way is to reduce those raw points to fewer representative prototypes. Here, we employ a synchronization-based
clustering to obtain these prototypes.

Typically, a synchronization-based clustering algorithm needs three definitions to simulate a dynamic clustering process:
first, a parameter � specifying the interaction range among objects; second, the interaction model for clustering; third, a
stopping criterion to terminate dynamic clustering. Our approach follows and extends the synchronization-based clustering
algorithm, SYNC, which is presented and discussed in full detail in Ref. [37].

Definition 1 (�-Range Neighborhood). Given a GPS dataset P � Rn, the �-range neighborhood of a GPS point p 2 P, denoted
as N�ðpÞ , is defined as:
N�ðpÞ ¼ fqjdistðp; qÞ 6 �g; ð3Þ
where distðp; qÞ is a metric distance function. The Euclidean distance is used in this study.
Definition 2 (Interaction Model). Let p be a GPS point on the map. With an �-range neighborhood interaction, the dynamics
of the value of the point p is defined as:
pðt þ 1Þ ¼ pðtÞ þ 1
jN�ðpÞj

�
X

q2N�ðpÞ
sinðqðtÞ � pðtÞÞ; ð4Þ
where sinðxÞ is the coupling function, applied to every dimension of the vector x. pðt þ 1Þ is the renewal position of pðtÞ dur-
ing the dynamic clustering, t 2 f0; . . . ; Tg denotes the iteration step. Note all dimensions are normalized to ½0;p=2� to let sinð�Þ
make sense.
Definition 3 (Cluster Order Parameter). The cluster order parameter r is used to terminate the dynamic clustering by inves-
tigating the degree of local synchronization, which is defined as:
rðtÞ ¼ 1
N

XN
i¼1

1
jN�ðpðtÞÞj

X
q2N�ðpÞ

e�kqðtÞ�pðtÞk; ð5Þ
The dynamic clustering terminates when rðtÞ converges to 1.0, which indicates the local phase coherence. At this
moment, all cluster points have the same position.

For synchronization-based dynamic clustering, each point is viewed as a phase oscillator and has its own phase (position)
at the beginning. As time elapses, each point interacts with its �-range neighborhood according to the interaction model Eq.
(4). Finally, all locally similar points are synchronized together, and prototypes are formed. A prototype also represents the

center of an ROI. We illustrate this process in Fig. 2(a) and (b), where pl
i is a point that would be absorbed into ROIlx with other

points in this region. Meanwhile, pl
j has no neighbors to interact. It would, consequently, constitute a solitary region ROIly,

which aptly preserves the information of original data. The salient feature of synchronization-based clustering is its dynamic
property–the position value of point changes in a non-linear way driven by the local data structure. Hence, the derived ROI
well preserves the original data structure.
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plðt þ 1Þ ¼ plðtÞ þ 1P
ql2N�ðplÞwql

�
X

ql2N�ðplÞ

wql sinðqlðtÞ � plðtÞÞ; ð6Þ
where wql is the number of points that are represented by the prototype ql on the layer l� 1. The whole algorithm is illus-
trated in Algorithm 1.

Finally, bridged by trajectories on every layer, all ROIs compose a hierarchical network. Besides, the speedup of the syn-
chronization process is another desirable property. The reason is that with smaller interaction range, CASCADESYNC is easier to
converge. Although more clusters are generated, they are viewed as new objects and can be further clustered efficiently.

Algorithm 1. Hierarchical ROI Extracting via CASCADESYNC
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3.2. Learning semantic trajectory representation via hierarchical ROI embedding model

After extracting the hierarchical ROI network, we can represent each trajectory as a sequence of ROIs on each layer of the
network. Although such a structure provides a more compact way to characterize the trajectory, the semantic information of
the whole trajectory is not well exploited. Inspired by the word embedding technique in Natural Language Processing (NLP),
we propose an embedding model to further transform ROIs and trajectories to continuous vectors in a semantic space so as
to uncover the hidden semantic information in trajectory data.
3.2.1. Semantic ROI embedding on one-layer network
The key to embedding model is to select the neighborhoods or contexts of a given object so that the relationships among

objects could be investigated. Therefore, we consider the embedding neighborhoods of an ROI from two aspects: geometric
neighborhood and semantic neighborhood.

Geometric Neighborhood. Given an ROI, its geometric neighbors are those surrounding ROIs that can transport to or be
transported from this ROI in W-hops on the ROI network. Fig. 3 shows the geometric neighbors with W ¼ 2, which are indi-
cated by green and blue circles. For example, ROIk is one of the geometric neighborhood of ROIi.

Semantic Neighborhood. An ROI is not just a node on the network; it also represents a region enriched with various
semantic information. We define the semantic neighborhoods of a given ROI to encode the rich semantics from the following
perspectives:

� Network properties. The hierarchical ROI network is a compact representation of trajectory data. In the network, the gen-
eral statistics of the transportation structure and traffic conditions can be extracted. Specifically, the node weight of an
ROI, i.e., the number of points the ROI represents, can reflect the population density of this region. The edge weight mea-
sures the strength of traffic flow between the two regions. The degree of an ROI node reflects whether a region is a hub in
the city. Moreover, the neighbor’s degree distribution of an ROI can reflect, from a higher level, the importance of the region.
For example, if two ROIs are similar to each other in the above aspects, maybe they represent a hub bus station and a
central railway station, or a huge industrial area and a university, respectively.

� Temporal contexts. Temporal information is also preserved in the ROI network after applying CASCADESYNC algorithm. The
distribution of visiting time and staying duration can reflect the temporal patterns of a region. For example, a region that
contains many restaurants might be visited mainly at lunchtime and dinner time. The regions representing residential
communities have a distinct characteristic that most people stay there all night.

� Domain Knowledge. Unlike the network properties and temporal information, domain knowledge cannot be extracted
from the trajectory data. Instead, domain knowledge is the auxiliary information incorporated into the embedding model
as a kind of supervised label. The domain knowledge includes, for instance, the distance between one ROI and the center
point of the city, or whether one ROI represents a road junction, a supermarket, or a dangerous crime area.

An example is illustrated in Fig. 3, where the ROIj drawn in the purple circle is a semantic neighborhood of target ROIi.
Even though that they are not connected by any trajectory with W ¼ 2 hops, the semantics of ROIj are more similar to those
of ROIi than all other ROI, which results in a strong correlation between them.

Once the geometric and semantic neighborhoods are obtained, we can embed ROIs into a high dimensional space borrow-
ing the idea of the skip-gram model with negative sampling (SGNS) architecture [25].
≈
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Fig. 3. Illustration of embedding neighborhoods (contexts) of a given target ROI.
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Embedding Model. Given a trajectory dataset T , for any layer on the generated hierarchical ROI network, letw be any ROI
on this layer, NðwÞ be the collection of all geometric and semantic neighborhood ROIs of w, and NEGðwÞ be the negative sam-
pling set of w, which can be drawn using the distribution of network nodes’ weight. We define the probability of transporta-
tion from a source ROI u 2 NðwÞ to the target ROI v as:
pðv juÞ ¼ rð~tw � ~suÞ if v ¼ w;

1� rð~tv � ~suÞ otherwise:

(
ð7Þ
where rðxÞ ¼ 1=ð1þ expð�xÞÞ is the sigmoid function. ~su and ~tv are the source and target vectors of ROI u and v, respectively.
Accordingly, the likelihood function is written as follows.
LHl ¼ log
Y

w2ROI l

Y
u2NðwÞ

rð~tw � ~suÞ
Y

v2NEGðwÞ
½1� rð~tv � ~suÞ� ¼

X
w2ROI l

X
u2NðwÞ

logrð~tw � ~suÞ þ
X

v2NEGðwÞ
log½1� rð~tv � ~suÞ�

( )
; ð8Þ
The likelihood function indicates that the target ROI vector in the embedding space should be located as close to all vec-
tors of its neighborhoods as possible, while distinguishing from the vectors of its negative samples.

3.2.2. Feature Propagation through the multi-layer networks
The embedding process is conducted on every layer of the hierarchical ROI network. Moreover, considering every ROI has

the parent or children (unless it is on the top or bottom layer), we make an intuitive assumption that every ROI should be
embedded close to its parent ROI (if it exists). The assumption is justified in urban semantics. For example, the semantic
meaning of a business center should contain all the functions and utilities provided by the companies or shops in the region.
Therefore, we augment the embedding model with a regularization term as follows:
LVl ¼
X

w2ROI l

1
2
k~tw � ~tpðwÞk22 þ

1
2
k~sw � ~spðwÞk22; ð9Þ
where pðwÞ is its parent of ROIw. Actually, this term regulates the embedding vectors by propagating influences from parent

nodes to children nodes on the hierarchical ROI network. An example is shown in Fig. 2(d), where the ROIlþ1
j is a node on

layer lþ 1 of hierarchical ROI network, and the vector of ROIlþ1
j is constrained by vectors of its parent node ROIlþ2

i and its child

node ROIlk.

3.2.3. Hierarchical ROI embedding on multi-layer networks
Eventually, by integrating the embedding model Eq. (8) and the regularization term Eq. (9), the objective function on the

whole hierarchical ROI network is reformulated as follows.
max
X
l¼1:LM

LHl � a
X

l¼1:LM�1

LVl ð10Þ
where a is a trade-off coefficient. We apply the stochastic gradient descent (SGD) algorithm for the optimization of Eq. (10).
The derivatives of parameters are written as lines 7–17 in Algorithm 2.

3.2.4. Trajectory semantic embedding
Once we derive the semantic embedding for each ROI, the semantic vector of a trajectory can be easily obtained by sum-

ming up all feature vectors of the corresponding ROIs with weights. Formally, given a trajectory Tl ¼ fROIl1;ROI
l
2; � � � ;ROI

l
ng on

the layer l, the embedding vector, denoted as vecðTÞ, is defined as:
vecðTÞ ¼
XLM
l¼1

Xn
i¼1

sli � vecðROI
l
iÞ: ð11Þ
The node weight of ROIli is sli, which is defined as the duration of the stay of the trajectory T at ROIli. Here, some sophisticated
strategies (e.g., a time decay function) can be used to capture the detailed temporal information.

It may seem a little straightforward at first glance, compared to those deep models tailored for sentence embedding
[28,29]. However, the additive model is prevalent and proved to be very effective for sentence embedding [45]. Wieting
et al. [46] even showed that the model, which embeds the sentences by simply averaging the vectors of words, beats almost
all neural network-based models. Besides, it is intuitive as the element ROIs in order can completely characterize a
trajectory.
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Algorithm 2. Semantic Trajectory Embedding
3.3. Semantic ROI and trajectory retrieval

In reality, many patterns are contained implicitly in trajectories, which means the queries cannot be conducted directly.
As an alternative, we can query the most similar places or trajectories of a selected place or trajectory; i.e., we can retrieve all
ROIs/trajectories ordered by the similarity to a specific sample, rather than constructing complex queries directly.

Since ROIs/trajectories are represented as vectors in continuous with semantics, we can retrieve the most similar ROIs/-
trajectories by computing the distances among the embedding vectors. Without loss of generality, we use Euclidean distance
in this work.

3.4. Time complexity analysis

Our semantic trajectory representation mainly includes two parts: ROI extraction and semantic embedding. For ROI
extraction via CASCADESYNC model, the time complexity is OðL� T � ðNl � LogðNlÞÞÞ, where Nl is the number of points, which
reduces exponentially over the layer l; T is the time steps in each round and L is the number of layers in CascadeSync. Usually,
L is small with L � 20 in practice. The time complexity of ROI embedding is OðK � N � N1 � N2Þ, where N is the number of
points, N1 is the number of geometric and semantic neighborhoods, N2 is the number of negative samples, and K is the num-
ber of iterations.
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4. Experiments

In this section, we evaluate the proposed method on both the synthetic data and real-world datasets.

4.1. Experimental setup

4.1.1. Datasets
We introduce the synthetic data and four real-world trajectory datasets.
Synthetic Data. To prove the concepts, we generate 50 random trajectories, given a random starting point and a random

ending point, using the probabilistic path planning algorithm [47]. To define the semantics in the trajectories, we randomly
select 10 points as key points and ensure that each key point is passed by at least one trajectory. The semantic ROI and tra-
jectory retrieval tasks aim detect the ROIs and trajectories highly related to these key points.

Real-World Data.We evaluate our proposed method on four trajectory data: Geolife1 [48], T-Drive2 [49], Kaggle Taxi3 and
Chengdu. Geolife is a trajectory dataset collected from daily human life, which can reveal human mobility. T-Drive, Chengdu,
and Kaggle Taxi contain trajectories generated by urban taxis. The statistics of four datasets are listed in Table 2. It should
be noted that both Geolife and T-Drive are trajectory datasets in Beijing, and the distinction between them lies in the sampling
rates. About 91 percent of trajectories from Geolife are logged in a dense representation, e.g., every 1–5 s or every 5–10 meters
between two continuous sample points, while trajectories from T-Drive are sampled in a very low frequency of 2–5 min per
point.

4.1.2. Evaluation metrics
In order to measure the accuracy of semantic retrieval results, we need to define the semantic ground-truth of ROI and

trajectory. In the synthetic experiment, the semantic ground-truth is implied in the 10 key points. For similar ROI retrieval
task, given any key point, the most similar ROI should be those ROIs that contain other nine key points, which are referred to
as the ground-truth ROIs, or the key ROIs. The retrieval performance is measured by the ratio of those correctly detected
ROIs. For the trajectory retrieval task, we select the target trajectory as the trajectory that passes ground-truth ROIs as many
times as possible. The most similar trajectories to the target, in this semantic, should contain as many ground-truth ROIs as
possible. Therefore, we can obtain the ground-truth order of retrieved trajectories. The performance can be measured by
comparing the ground-truth order and retrieved order via computing the normalized discounted cumulative gain at a par-
ticular rank k (NDCG@k), which is defined as follows.
1 http
2 http
3 http
4 http
5 http
NDCG@k ¼ DCG@k
IDCG@k

; ð12Þ
where IDCG@k is the ideal DCG@k value of the ground-truth order, and DCG@k is defined as:
DCG@k ¼
Xk

i¼1

2reli � 1
log2ðiþ 1Þ ; ð13Þ
where reli is the ordinal relevance of the result at position i. For clarity, we use 5 levels of relevance throughout all exper-
iments and ensure that each level contains objects equally.

4.1.3. Baseline methods
On the semantic trajectory retrieval task, we compare our proposed method with four traditional trajectory metric meth-

ods: DTW [9], LCSS [10], EDR [11], and Fréchet distance [12]. All of them are designed to compute the geometric distance
between two trajectories. Furthermore, five state-of-the-art network embedding methods: DeepWalk [30], LINE [32], BGEM
[34], Metapath2Vec [35], and Node2Vec [33] are used to retrieve trajectories. Specifically, we learn representations of all
nodes on the ROI network via these network embedding methods and then obtain the trajectory representation by averaging
the embedding vectors of those points or regions which compose a trajectory.

4.1.4. Data preparation
Real-world Region Ground-truth Acquisition. Real-world trajectory data is enriched with various semantic informa-

tion; however, the ground-truth labels are usually hard to obtain. Fortunately, benefited from the reverse geocoding function
of online map services, MapBox API,4 and Amap API,5 we can attain information of regions, which serves as the domain knowl-
edge as well as the ground-truth labels in the experiments. More specifically, the APIs can convert GPS coordinates to function
categories, such as banks, schools, or markets. Therefore, we define the semantic ground-truth label of every ROI as its
s://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/.
s://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/.
s://www.kaggle.com/crailtap/taxi-trajectory.
s://www.mapbox.com/.
s://www.amap.com/.

https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.kaggle.com/crailtap/taxi-trajectory
https://www.mapbox.com/
https://www.amap.com/


Table 2
Information of four real-world datasets.

Dataset #Point #Traj. [Longitude, Latitude range] [Width � Height] (m)

Geolife 24,876,978 18,670 [116.194, 116.553, 39.751, 40.033] [31,024 � 31,368]
T-Drive 6,969,481 8,768 [116.194, 116.553, 39.751, 40.033] [31,024 � 31,368]
Kaggle 78,239,735 1,704,769 [�8.702, �8.549, 41.135, 41.246] [12,613 � 12,365]
Chengdu 9,671,104 2,003 [103.913 ,104.180, 30.538, 30.765] [25,484 � 25,219]
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distribution of function categories, and the ground-truth similarity of two ROIs A and B is defined as the common area of two
distributions:
SimðA;BÞ ¼
X

minðdistributionðAÞ;distributionðBÞÞ: ð14Þ
For example, the category distributions of two places are A: {bank, school, market, music} = {0.2, 0.7, 0.1, 0}, B: {bank,
school, market, music} = {0.4, 0.3, 0, 0.3}. Then SimðA;BÞ ¼ 0:2þ 0:3þ 0þ 0 ¼ 0:5. By the way, the reason why we use Eq.
(14) rather than other measures, e.g., KL-divergence, is that it is intuitive and suitable for sparse distribution measuring.

Real-world Trajectory Ground-truth Acquisition. The semantic ground-truth labels and ground-truth similarity of ROIs
are easily obtained by utilizing the map APIs and Eq. (14), respectively. The difficulty lies in obtaining the semantic ground-
truth of trajectories. Here, we use an intuitive method: A trajectory is composed of a set of sampling points, so the ground-
truth label of this trajectory can be computed by the normalized sum of the ground-truth labels of its sampling points.
Besides, it is too trivial and expensive to use raw GPS points to call the map APIs. Thus, we use CASCADESYNC to derive a
single-layer ROI network with a small interaction range (� ¼ 1=200 	 ðwþ hÞ, where w; h are the width and height of
map of dataset) to reduce the millions of GPS points to thousands of ROIs. Then the ground-truth labels and similarity (using
Eq. (14)) of trajectories can be easily obtained. Later we will use this auxiliary ROI network.

Afterward, we can perform the semantic ROI/trajectory retrieval and compute the NDCG@k between retrieved ROIs/tra-
jectories and ground-truth. Moreover, we can compare the performance with baseline methods. Without loss of generality,
the four comparison metrics are computed on the auxiliary ROI network mentioned above.

Trivial Solution Removal. For semantic trajectory retrieval, if retrieved trajectories overlap with querying trajectory, i.e.,
they share most ROIs, the NDCG@k value will show statistical significance. However, this trivial solution does not have prac-
tical significance. Thereby, we stipulate that a retrieved trajectory is valid only when it shares fewer than 50% of ROIs with
querying trajectory on the auxiliary ROI network.

4.2. Proof of concept

We start with the experiments on synthetic data to prove the basic properties of our proposed approach. We randomly
generate trajectories and key points in a box with the side length being 100 m, illustrated in Fig. 4(a). With varying the inter-
action ranges � ¼ f2;4;6;8;10gðmÞ, we apply the CASCADESYNC model to generate a 5-layer hierarchical ROI network. The bot-
tom layer ROI network is visualized in Fig. 4(b). The key points, which are plotted as grey pentagons on the map, represent
important places in reality, e.g., fire stations, crime areas. In the following, we design two experiments of semantic evalua-
tion and trajectory retrieval.

4.2.1. Key point detection on synthetic data
To examine whether our representation embeds information of key points correctly, we experiment by retrieving the

most similar region of a given key point. In this task, we use the domain knowledge: whether an ROI contains any key point.
To test whether those key ROIs have similar representations, we evaluate the retrieval accuracy of the most similar ROIs for a
given key ROI (blue ROI in Fig. 4(b)). The ideal retrieval result is that all key ROIs are more similar than those non-key ROIs.

Building upon the embedding vectors of ROIs and trajectories, we search the most similar POIs. The experiment is
repeated 100 times on randomly generated datasets independently. The resulting average accuracy is 99:64%, demonstrat-
ing that the semantics of key points are successfully incorporated into the embedding representation, and the key points can
be detected effectively.

4.2.2. Semantic trajectory retrieval on synthetic data
Here, we conduct a similar experiment on the trajectory level. The query is a target trajectory that contains many key

ROIs. Thus, the similar trajectories should contain as many key ROIs as possible. We compute and rank the similarity of
the rest 49 trajectories to the target, and measure the quality of the ranking result using NDCG@k in Eq. (12). One result
is visualized in Fig. 4(c), in which the color shade of green trajectories is proportional to the retrieval order. Moreover, we
conduct the same experiment using four state-of-the-art metrics on the first layer ROI network (the finest level that has
the key ROI labels). The result is shown in Fig. 5. The experiments are repeated 100 times, and the average NDCG@k value
is computed. From the figure, we can observe that our model beats all traditional and deep embedding models, which proves
we successfully captured the semantic information in the synthetic data. Also, we observe that all deep embedding models



Fig. 4. Illustration of synthetic data and evaluation results. (a) Raw data with key points. The 10 pentagons are randomly generated key points. (b) The
bottom layer of the hierarchical ROI network. The blue ROIs are the key ROIs that contain at least one key point. (c) Trajectory retrieval result. The black
trajectory is the target. The green trajectories in different shades are retrieved results. The deeper the color is, the more similar they are to the target, i.e.,
containing more key ROIs.

Fig. 5. Semantic trajectory retrieval on the synthetic data.
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(DeepWalk, BGEM, Node2Vec, Metapath2Vec, and LINE) have inferior performances compared with the traditional trajectory
metric-based models (DTW, LCS, Fréchet distance, and EDR). The reason is that these deep embedding models work by only
learning the network structure information, which not only ignores the specific semantics that we defined but also fails to
capture the geometric information that traditional metric-based models intend to exploit.

4.3. Evaluation on real-world data

4.3.1. Effect of key parameter
The interaction range � which controls the trade-off of compression degree and the representative accuracy is the most

critical parameter in our model. In order to measure the information loss with different values of interaction range �, we use
Mean of Squared Error (MSE), defined as:
MSE ¼ 1
jPj

XjPj
i¼1

ðPi � ROIjÞ2; ð15Þ
where Pi is a GPS point. By setting �ðlÞ ¼ l� 0:005� ðwidthþ heightÞ; l ¼ f1; � � � ;10g, we generate a 10-layer ROI network
with CASCADESYNC. Fig. 6 shows the number and MSE of ROIs with different � on each layer. The result manifests that the infor-
mation loss is linearly proportional to �. Besides, the resemblance in the shape of curves manifests the insensitivity of param-
eter �.

4.3.2. Semantic retrieval with different embedding schemes
Given an ROI, we retrieve the top-5 most similar ROIs and compute the NCDG@5. Besides, given a trajectory, we retrieve

the top-10 most similar trajectories and compare the performance with the comparison methods. Here we report



Fig. 6. Exploring �’s effects on four real-world datasets.
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NCDG@3,5,10, respectively. Both the semantic ROI retrieval and semantic trajectory retrieval tasks are repeated 10 times for
all methods, and the average value and standard deviation of the result are reported. Moreover, we set the number of each
neighborhood as 3 and the negative sampling number as 5, and �ðlÞ ¼ l� 1=200� ðwidthþ heightÞ; l ¼ f1; . . . ;5g to derive a
5-layer hierarchical ROI network.

To explore the effects of different semantic information on real-world data, we vary the types of neighborhoods incorpo-
rated into embedding model in three ways: 1) Only geometric information (i.e., basic trajectory structure); 2) Geometric and
basic semantics (i.e., network features and temporal information); 3) All kinds of information and domain knowledge are
modeled. Moreover, we investigate the effect of feature propagation by constructing two embedding models: Embedding
model trained only on the bottom layer (�ðtÞ ¼ 1=200� ðwidthþ heightÞ) of hierarchical ROI network via Eq. (8) and the
whole model on all five layers via Eq. (10).

For better illustration, we select an ROI that represents a hub junction in Kaggle Taxi data as a target ROI. We apply the
embedding models with/without semantic neighborhoods on the aforementioned 5-layer network. The retrieval results are
shown in Fig. 7. From the results, we can obtain that the model with semantic neighborhoods captures the semantic infor-
mation and thus easily identifies the urban roles of regions, and retrieves hub junctions far away from querying target junc-
tion. The reason is that the semantics of traffic is reflected by the degree and the distribution of neighbors’ degree of ROIs on
the network. Therefore, similar regions are not necessary to be near to each other.

The results of semantic ROI retrieval and semantic trajectory retrieval are summarized in Tables 3 and 4, respectively,
from which we can gain several insights as follows:

First, both of the tables show that the retrieval performances on the hierarchical ROI embedding network are superior to
the one-layer embedding network on the two datasets Geolife and Kaggle; however, the retrieval results on the other two
datasets, i.e., T-Drive and Chengdu, show that one-layer network is better than the hierarchical network. It can be explained
by the fact that the POI points in T-Drive and Chengdu are far more sparse than those in Geolife and Kaggle, so more errors
exist in the hierarchical ROI network, which adversely affects the feature propagation on different layers (Eq. (9)). The retrie-
val performances, moreover, are degenerated. Even so, the performances of the proposed method are superior to all the other
state-of-the-art similarity-based methods.
Fig. 7. Illustration of ROI retrieval on the Kaggle Taxi data.



Table 3
NDCG@5 results of ROI retrieval. Model 1 only considers geometric neighborhoods. Model 2 considers geometric and basic semantic neighborhoods. Model 3 is
trained with domain knowledge. (Bold: Best; underline: runner-up).

DataSets Structure Random Model 1 Model 2 Model 3

Geolife One-layer 0.429 ± 0.24 0.526 ± 0.18 0.560 ± 0.15 0.713 ± 0.18
Hierarchical 0.581 ± 0.15 0.615 ± 0.13 0.724 ± 0.17

T-Drive One-layer 0.382 ± 0.23 0.632 ± 0.21 0.661 ± 0.18 0.713 ± 0.21
Hierarchical 0.650 ± 0.24 0.655 ± 0.23 0.693 ± 0.18

Kaggle One-layer 0.410 ± 0.28 0.524 ± 0.20 0.542 ± 0.22 0.679 ± 0.19
Hierarchical 0.524 ± 0.22 0.567 ± 0.21 0.691 ± 0.16

Chengdu One-layer 0.415 ± 0.25 0.666 ± 0.20 0.677 ± 0.21 0.817 ± 0.17
Hierarchical 0.657 ± 0.23 0.665 ± 0.20 0.802 ± 0.16
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Second, in terms of the semantic embedding models, the more semantic neighborhoods are considered, the better the
performances of semantic retrieval are. Therefore, in Table 3, the performances are increasing onModel 1, 2, and 3; in Table 4,
the retrieval performances of embedding model with domain knowledge are better than those without domain knowledge,
regardless of whether it is the one-layer or multi-layer embedding model. When embedding the model trained with domain
Table 4
Evaluation results of semantic trajectory retrieval on four datasets. The abbreviation D.K. denotes domain knowledge. (Bold: Best; underline: runner-up).

Methods D.K. Metrics Geolife T-Drive Kaggle Chengdu

DTW NDCG@3 0.391 ± 0.198 0.416 ± 0.201 0.311 ± 0.223 0.417 ± 0.168
NDCG@5 0.410 ± 0.185 0.430 ± 0.168 0.321 ± 0.215 0.442 ± 0.153
NDCG@10 0.521 ± 0.134 0.443 ± 0.149 0.342 ± 0.207 0.457 ± 0.145

Fréchet NDCG@3 0.328 ± 0.179 0.304 ± 0.191 0.250 ± 0.175 0.360 ± 0.239
NDCG@5 0.393 ± 0.178 0.346 ± 0.156 0.288 ± 0.151 0.388 ± 0.229
NDCG@10 0.439 ± 0.165 0.371 ± 0.141 0.300 ± 0.148 0.417 ± 0.211

LCSS NDCG@3 0.360 ± 0.258 0.396 ± 0.241 0.349 ± 0.227 0.314 ± 0.241
NDCG@5 0.368 ± 0.224 0.402 ± 0.211 0.375 ± 0.218 0.346 ± 0.221
NDCG@10 0.379 ± 0.184 0.402 ± 0.180 0.382 ± 0.214 0.376 ± 0.209

EDR NDCG@3 0.340 ± 0.189 0.358 ± 0.195 0.290 ± 0.182 0.416 ± 0.196
NDCG@5 0.411 ± 0.171 0.363 ± 0.184 0.304 ± 0.177 0.424 ± 0.171
NDCG@10 0.467 ± 0.171 0.379 ± 0.161 0.308 ± 0.162 0.449 ± 0.179

DeepWalk NDCG@3 0.244 ± 0.173 0.309 ± 0.159 0.263 ± 0.168 0.340 ± 0.156
NDCG@5 0.278 ± 0.190 0.330 ± 0.183 0.257 ± 0.157 0.377 ± 0.167
NDCG@10 0.301 ± 0.187 0.351 ± 0.173 0.281 ± 0.175 0.385 ± 0.164

BGEM NDCG@3 0.302 ± 0.121 0.376 ± 0.155 0.249 ± 0.196 0.343 ± 0.182
NDCG@5 0.324 ± 0.134 0.374 ± 0.132 0.286 ± 0.128 0.367 ± 0.167
NDCG@10 0.330 ± 0.129 0.393 ± 0.137 0.298 ± 0.170 0.371 ± 0.172

Metapath2Vec NDCG@3 0.248 ± 0.168 0.294 ± 0.203 0.252 ± 0.185 0.361 ± 0.215
NDCG@5 0.263 ± 0.185 0.328 ± 0.192 0.262 ± 0.191 0.365 ± 0.218
NDCG@10 0.309 ± 0.192 0.326 ± 0.198 0.312 ± 0.216 0.392 ± 0.206

Node2Vec NDCG@3 0.267 ± 0.184 0.301 ± 0.191 0.259 ± 0.196 0.382 ± 0.186
NDCG@5 0.282 ± 0.191 0.295 ± 0.161 0.263 ± 0.162 0.409 ± 0.194
NDCG@10 0.289 ± 0.188 0.312 ± 0.178 0.287 ± 0.180 0.417 ± 0.185

LINE NDCG@3 0.377 ± 0.209 0.411 ± 0.183 0.302 ± 0.187 0.404 ± 0.195
NDCG@5 0.382 ± 0.203 0.423 ± 0.172 0.334 ± 0.207 0.419 ± 0.201
NDCG@10 0.394 ± 0.225 0.419 ± 0.185 0.338 ± 0.193 0.421 ± 0.198

One-layer model NDCG@3 0.468 ± 0.177 0.529 ± 0.169 0.406 ± 0.185 0.588 ± 0.159
NDCG@5 0.483 ± 0.165 0.545 ± 0.144 0.413 ± 0.160 0.622 ± 0.124
NDCG@10 0.520 ± 0.156 0.544 ± 0.139 0.430 ± 0.150 0.651 ± 0.112

U NDCG@3 0.607 ± 0.152 0.707 ± 0.179 0.593 ± 0.164 0.834 ± 0.143

NDCG@5 0.639 ± 0.120 0.711 ± 0.172 0.604 ± 0.150 0.859 ± 0.139

NDCG@10 0.657 ± 0.109 0.734 ± 0.168 0.607 ± 0.157 0.866 ± 0.113

Hierarchical model NDCG@3 0.545 ± 0.171 0.547 ± 0.182 0.438 ± 0.183 0.611 ± 0.160
NDCG@5 0.552 ± 0.162 0.564 ± 0.169 0.445 ± 0.151 0.635 ± 0.139
NDCG@10 0.558 ± 0.148 0.599 ± 0.155 0.452 ± 0.145 0.666 ± 0.114

U NDCG@3 0.663 ± 0.148 0.697 ± 0.184 0.600 ± 0.209 0.833 ± 0.120
NDCG@5 0.676 ± 0.104 0.702 ± 0.183 0.612 ± 0.183 0.849 ± 0.112
NDCG@10 0.689 ± 0.094 0.721 ± 0.175 0.626 ± 0.188 0.862 ± 0.096
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knowledge, we found that the performance relies mainly on label quality and are generally better than those without domain
knowledge. This insight is straightforward and suggests that one should pay more attention to collecting more domain
knowledge and thus integrating it into the representation features. Besides, because our experiments are evaluated in term
of semantic similarity, the classical models (DTW, LCS, Fréchet distance, and EDR) which focus on computing the geometric
distance and the state-of-the-art deep network embedding methods (DeepWalk, BGEM, Node2Vec, Metapath2Vec, and LINE)
which are designed for exploiting the network properties cannot perform as well as our model.

5. Conclusion

In this paper, we propose a new semantic trajectory representation. To start with, we extract the trajectory structure
globally and represent the trajectory dataset as a multi-resolution ROI network via the synchronization-based clustering
model: CASCADESYNC. Relying on the network, by extracting the geometric, semantic, temporal information as well as addi-
tional domain knowledge as context information, we embed ROIs and trajectories as continuous vectors in the semantic
space via distributed vector representation, whose metric is tailored for measuring the semantic similarity. Building upon
the derived vectors, semantic retrieval tasks can be effectively and efficiently performed by computing the Euclidean dis-
tance of embedding vectors directly. Empirical experiments on both synthetic and real-world datasets indicate that our pro-
posed approach allows extracting semantic information effectively, and it outperforms classical metrics methods and state-
of-the-art deep network embedding models on the semantic trajectory retrieval tasks.
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